

Addressing the shortcomings of BEV Mapping

SHORTCOMINGS

Localization error in BEV Mapping/Scene understanding methods

- 1. Localization error increases for distant objects.
- 2. Depth estimation = primary challenge of object localization in BEV mapping.

SHORTCOMINGS

Visual cues used by scene understanding methods

- 1. Most methods rely on **object-ground intersections** as context for depth reasoning (Dijk and Croon 2019).
- 2. But these become **unreliable for distant objects**.

Dijk, T.V. and Croon, G.D., 2019. How do neural networks see depth in single images?

PROPOSAL

Localizing distant objects

- 1. When shadows are unreliable, **localize object depth by comparing objects to each other**.
- 2. How?
 - a. **Message-passing** across a graph of the objects

GRAPHS

Message-passing and Graph Convolutions

Methodology

Saha, A., Mendez, O., Russell, C. and Bowden, R., 2022. "The Pedestrian next to the Lamppost" Adaptive Object Graphs for Better Instantaneous Mapping.

OVERVIEW

BEV Mapping

1. Goal: learn a model that takes a monocular input **image** and generates a semantically segmented **BEV** of the scene - with **improved localization of distant objects**.

APPROACH OVERVIEW

Graphs for object-object reasoning

APPROACH OVERVIEW

Graphs for object-object reasoning

INPUT IMAGE and INITIAL GRAPH

- 1. **Learn spatial relationship** between objects to reason about scene layout.
- 2. Use object graphs to propagate context between objects.
- 3. Sets new SOTA in BEV mapping across Argoverse, Lyft and nuScenes.

MOTIVATION

Why use graph representations?

- 1. Graphs encode explicit **geometric** relationships between objects
 - a. Current BEV networks model this implicitly.
- 2. Graphs allow **nonlocal communication** between entities.
 - a. CNN typically requires many downsampling operations to do this.

MOTIVATION

Why learn node embeddings?

- 1. Message passing between nodes allows depth reasoning by comparing an object's appearance and other
 - Current BEV networks do not specifically use such cues/such object-object reasoning.

MOTIVATION

Why learn edge embeddings?

Overview

1. Two stage process: **object localization** followed by complete **BEV estimation**.

Overview

- 1. Two stage process: object localization followed by complete BEV estimation.
- 2. Graph Constructor: construct graph of objects in image

Overview

- 1. Two stage process: object localization followed by complete BEV estimation.
- 2. Graph Constructor: construct graph of objects in image
- 3. Graph Propagator: message pass to localize objects in BEV

Overview

- 1. Two stage process: object localization followed by complete BEV estimation.
- 2. Graph Constructor: construct graph of objects in image
- 3. Graph Propagator: message pass to localize objects in BEV
- 4. Scene Estimator: generate BEV maps

Graph constructor

1. Role: construct graph from objects in input image

Graph constructor

- 1. Role: construct graph from objects in input image.
- 2. Each object corresponds to a node.
- 3. Nodes assigned image object features.

Graph constructor

- 1. Role: construct graph from objects in input image
- 2. Each object corresponds to node.
- 3. Nodes assigned image object features.
- 4. Edge structure based on kNN in latent object feature space.
- 5. Edges assigned image features between objects.

Graph constructor

- 1. Role: construct graph from objects in input image
- 2. Each object corresponds to node.
- 3. Nodes assigned image object features.
- 4. Edge structure based on kNN in latent object feature space.
- 5. Edges assigned image features between objects.
- 6. Creates graph with **initial node and edge embeddings**.

Graph propagation

- 1. Role: message pass across graph to **learn embeddings for localisation**.
- 2. Two update mechanisms per round:
 - a. Node-level update
 - b. Edge level update

INPUT GRAPH NODE AND EDGE FEATURES

$$\begin{split} v_i^0 &= \left(p_i^v, S_i^v = \{ b_i^v, l_i^v, f_i^v \} \right) \\ e_{ij}^0 &= \left(p_i^e, S_i^e = \{ b_i^e, l_i^e, f_i^e \} \right) \end{split}$$

Graph propagation

- 1. Role: message pass across graph to learn embeddings for localisation.
- 2. Two update mechanisms per round:
 - a. Node-level update
 - b. Edge level update
- 3. Node update: weighted average of node and edge states of neighborhood.

Graph propagation

- 1. Role: message pass across graph to learn embeddings for localisation.
- 2. Two update mechanisms per round:
 - a. Node-level update
 - b. Edge level update
- 3. Node update: weighted average of node and edge states of neighborhood.

 V_2

 $E_{2.3}$

 V_3

 $E_{2,2}$

4. Edge update: same as node update but on conjugate of graph

Graph Propagator

- 1. Role: message pass across graph to learn embeddings for localisation.
- 2. Two update mechanisms per round:
 - a. Node-level update
 - b. Edge level update
- 3. Node update: weighted average of node and edge states of neighborhood.
- 4. Edge update: same as node update but on conjugate of graph
- 5. Outputs graph with **updated node and edge embeddings**.

Architecture

1. **Graph Constructor** generates a graph of the scenes objects.

- 1. Graph Constructor generates a graph of the scenes objects.
- 2. Graph Propagator updates node and edge embeddings through message-passing.

- 1. Graph Constructor generates a graph of the scenes objects.
- 2. Graph Propagator updates node and edge embeddings through message-passing.
- 3. Scene Estimator generates BEV maps from node embeddings and image features.

- 1. Graph Constructor generates a graph of the scenes objects.
- 2. Graph Propagator updates node and edge embeddings through message-passing.
- 3. Scene Estimator generates BEV maps from node embeddings and image features.
- 4. **Node embeddings** supervised for object BEV positions.
- 5. Edge embeddings supervised for object midpoint BEV position.

- 1. Graph Constructor generates a graph of the scenes objects.
- 2. Graph Propagator updates node and edge embeddings through message-passing.
- 3. Scene Estimator generates BEV maps from node embeddings and image features.
- 4. Node embeddings supervised for object BEV positions.
- 5. Edge embeddings supervised for midpoint BEV position.
- 6. **BEV maps** supervised at scene level with dice loss.

Visualising intermediate layers

1. The Input Image I with candidate object regions B,

- 2. The Input Graph \mathcal{G} constructed in BEV Orthographic space from B,
- 3. The Output Graph \mathcal{G}' in BEV Orthographic space with refined node positions after message-passing across \mathcal{G} .
 - 4. The predicted BEV Map with the Output Graph \mathcal{G}' overlaid

50m

37.5m

GT BEV Map

Pred. BEV Map

50m

37.5m

ABLATIONS

Key result

Best localisation accuracy achieved by

the following message-passing:

- 1. node-to-node
- 2. edge-to-node
- 3. edge-to-edge
- 4. node-to-edge

Along with the following supervision:

- 1. node
- 2. edge

INPUT GRAPH NODE AND EDGE FEATURES

$$\begin{split} v_i^0 &= \left(p_i^v, S_i^v = \{ b_i^v, l_i^v, f_i^v \} \right) \\ e_{ij}^0 &= \left(p_i^e, S_i^e = \{ b_i^e, l_i^e, f_i^e \} \right) \end{split}$$

1	NODE-LEVEL UPDATE
($\mathcal{G}^{original graph}$ V_1
	$egin{array}{ccc} E_{1,2} & & & \\ V_4 & & V_2 & & \\ \end{array}$
	$E_{3,4}$ V_3 $E_{2,3}$
	node2node + edge2node M.P
	V ₄ E _{3,4} E _{2,3} V ₂
(

Graph Propagation	Supervision	Objects Mean
n2n	nodes	20.0
n2n + e2n	nodes	21.1
n2n+_e2n_+_e2e	nodes and edges _	25.9 _
n2n + e2n + e2e + n2e	nodes and edges	27.1

$$\begin{split} e_{ij}{}' &= (p_i^{e\prime}, S_i^{e\prime} = \{b_i^{e\prime}, l_i^{e\prime}, f_i^{e\prime}\}) \\ v_i{}' &= (p_i^{v\prime}, S_i^{v\prime} = \{b_i^{v\prime}, l_i^{v\prime}, f_i^{v\prime}\}) \end{split}$$

Localizing distant and partially occluded objects

50m

SOTA Comparison

Input Image

Model	Mean IoU	Objects Mean IoU
PON [34]	19.1	12.9
STA-ST [37]	23.7	16.4
TIIM-ST [36]	25.7	18.1
Ours	33.0	27.1
Rel. improv (%)	32.4	50.0

37.5m25m -12.5m -0m --25m -12.5m 0m drivable

SOTA Comparison

Input Image

ped'crossing

carpark

bus

truck

bicycle

traffic cone

barrier

motorcycle

pedestrian

Thanks for watching! Questions?