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SHORTCOMINGS

Localization error in BEV Mapping/Scene understanding methods

OUTPUT:
BEV MAP

INCREASING
LOCALIZATION
ERROR

Localization error increases for

distant objects.

Depth estimation = primary challenge
of object localization in BEV mapping.
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SHORTCOMINGS

Visual cues used by scene understanding methods

1. Most methods rely on object-ground intersections as context for depth reasoning (Dijk and
Croon 2019).

2. But these become unreliable for distant objects.

Dijk, T.V. and Croon, G.D., 2019. How do neural networks see depth in single images?
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PROPOSAL

Localizing distant objects

1. When shadows are unreliable, localize object depth by comparing objects to each other.

2. How?
a. Message-passing across a graph of the objects
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GRAPHS

Message-passing and Graph Convolutions
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Methodology
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Saha, A, Mendez, O., Russell, C. and Bowden, R., 2022. "The
Pedestrian next to the Lamppost” Adaptive Object Graphs for Better
Instantaneous Mapping.
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OVERVIEW
BEV Mapping

1. Goal: learn a model that takes a monocular input image and generates a semantically
segmented BEV of the scene - with improved localization of distant objects.

OUTPUT
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APPROACH OVERVIEW

Graphs for object-object reasoning

INPUT:
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GRAPH CONSTRUCTION &
PROPAGATION

OUTPUT:
BEV MAP

41



APPROACH OVERVIEW

Graphs for object-object reasoning
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Learn spatial relationship between

objects to reason about scene layout.

Use object graphs to propagate
context between objects.

Sets new SOTA in BEV mapping

across Argoverse, Lyft and nuScenes.
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MOTIVATION

Why use graph representations?

1. Graphs encode explicit geometric
relationships between objects

a. Current BEV networks model
INPUT: this implicitly.

2. Graphs allow nonlocal
communication between entities.

£ GRAPH CONSTRUCTION & a.  CNN typically requires many
E:  PROPAGATION downsampling operations to do
17 this.

OUTPUT:
BEV MAP

n B

43



MOTIVATION

Why learn node embeddings?

141

INPUT:
IMAGE

E,
Vs

E;

GRAPH CONSTRUCTION &

PROPAGATION

OUTPUT:
BEV MAP

Message passing between nodes
allows depth reasoning by comparing
an object's appearance and other
features.

a. Current BEV networks do not
specifically use such cues/such
object-object reasoning.
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MOTIVATION

Why learn edge embeddings?

141

E,
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OUTPUT:
BEV MAP

Learning edge embeddings allows us
to place further constraints on object
localization.

a. Forces congruency between
predicted object locations.
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METHOD

Overview

1. Two stage process: object localization followed by complete BEV estimation.
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METHOD

Overview

1. Two stage process: object localization followed by complete BEV estimation.

2. Graph Constructor: construct graph of objects in image
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METHOD

Overview
1. Two stage process: object localization followed by complete BEV estimation.
2. Graph Constructor: construct graph of objects in image

3. Graph Propagator: message pass to localize objects in BEV
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]| |

| E obj (0’ 5’ C) ‘CObj ((I}, z ) N »Cscene
4

= | (B @)

] BEV MAPS (scene)
| . xrBEV 2 Ecens
i g ‘ MP i gl H
iy oBJECT || | oBucT L {
GRAPH 4 cRaPH ) >
(initial) (final) | !
GRAPH PROPAGATOR SCENE ESTIMATOR - ‘

48



METHOD

Overview

1. Two stage process: object localization followed by complete BEV estimation.
2. Graph Constructor: construct graph of objects in image

3. Graph Propagator: message pass to localize objects in BEV
4

Scene Estimator: generate BEV maps

BEV OBJECT LOCALIZATION BEV ESTIMATION
| | 1
~(®;,S5;)—~ e —— A— EObj (0, 51 C) ‘Cobj ((E, Z) P a N »Cscene
\
B | l _ ~ | T ‘\ D MZEBEV
S T ‘l‘ o e . B EV BEV MAPS (scene)
s | g g H
GRAPH CONSTRUCTOR %'R"/::: éRAPH PROPAGAT(.)R G(E"A;r 7 SCENE ESTIMATOR

49



METHOD

Graph constructor

1. Role: construct graph from objects in input image
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METHOD

Graph constructor

1. Role: construct graph from objects in input image.
2. Each object corresponds to a node.

3. Nodes assigned image object features.
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METHOD

Graph constructor

1. Role: construct graph from objects in input image
Each object corresponds to node.
Nodes assigned image object features.

Edge structure based on kNN in latent object feature space.

a > W M

Edges assigned image features between objects.

OBJECT CROPs
FRONTEND ‘

INPUT IMAGE

6,12

Edge
Node features

features
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METHOD

Graph constructor

1. Role: construct graph from objects in input image

Each object corresponds to node.

Nodes assigned image object features.

Edge structure based on kNN in latent object feature space.

Edges assigned image features between objects.

L T

Creates graph with initial node and edge embeddings.
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METHOD
Graph propagation
1. Role: message pass across graph to learn embeddings for localisation.
2. Two update mechanisms per round:
a. Node-level update

b. Edge level update
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METHOD
Graph propagation
1. Role: message pass across graph to learn embeddings for localisation.
2. Two update mechanisms per round:
a. Node-level update
b. Edge level update

3.  Node update: weighted average of node and edge states of neighborhood.
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METHOD
Graph propagation

1. Role: message pass across graph to learn embeddings for localisation.

2. Two update mechanisms per round:

a. Node-level update

b. Edge level update

3. Node update: weighted average of node and edge states of neighborhood.

4. Edge update: same as node update but on conjugate of graph
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METHOD

Graph Propagator
1.

a.
b.
3.
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Outputs graph with updated node and edge embeddings
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Role: message pass across graph to learn embeddings for localisation
2. Two update mechanisms per round:

Node update: weighted average of node and edge states of neighborhood
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METHOD

Architecture
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Graph Constructor generates a graph of the scenes objects.
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METHOD

Architecture
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1. Graph Constructor generates a graph of the scenes objects.

2. Graph Propagator updates node and edge embeddings through message-passing.



METHOD

Architecture
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1. Graph Constructor generates a graph of the scenes objects.
2. Graph Propagator updates node and edge embeddings through message-passing.

3. Scene Estimator generates BEV maps from node embeddings and image features.
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METHOD

Architecture
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Graph Constructor generates a graph of the scenes objects.

Graph Propagator updates node and edge embeddings through message-passing.
Scene Estimator generates BEV maps from node embeddings and image features.
Node embeddings supervised for object BEV positions.

Edge embeddings supervised for object midpoint BEV position.
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BEV MAPS (scene) )

61



METHOD

Architecture
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1. Graph Constructor generates a graph of the scenes objects.
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Node embeddings supervised for object BEV positions.
Edge embeddings supervised for midpoint BEV position.

BEV maps supervised at scene level with dice loss.
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Graph Propagator updates node and edge embeddings through message-passing.

Scene Estimator generates BEV maps from node embeddings and image features.

62



1.0

0.8

0.6

0.4

RESULTS

Visualising intermediate layers

1. Input Image

1. The Input Image I with candidate object regions B,

2. The Input Graph G constructed in BEV Orthographic space from B.
3. The Output Graph G/ in BEV Orthographic space with refined node positions after message-passing across G.
4. The predicted BEV Map with the Output Graph Gr overlaid

Input image with candidate object regions connected based on input graph G

2. Input Graph G (unscaled)
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ABLATIONS

Key result
Best localisation accuracy achieved by Graph Propagation Supervision Objects Mean
the following message-passing: n2n nodes 20.0
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RESULTS

Localizing distant and partially occluded objects

Ground truth STA-ST[*7] TIIM-ST [6]




RESULTS
SOTA Comparison

Objects
Mean Mean
Model IoU IoU
PON [34] 19.1 12.9
STA-ST [37] 23.7 16.4
TIIM-ST [36] 25.7 18.1
Ours 33.0 27.1
Rel. improv (%) 32.4 50.0
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RESULTS
SOTA Comparison

Input Image
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Thanks for watching!
Questions?
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