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Overview

— Depth estimation is the process of reconstructing the 3D geometry of

the scene from its 2D image projection(s)
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Overview

— Core component of mid/high-level

computer vision tasks
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Overview

— Depth estimation comes in many forms!

Multi-view Stereo Monocular
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Overview

Object
Reconstruction

Proxy
ground-truth

NERFs
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Overview

Disparity Optical Flow
Proxy
ground-truth SLAM I
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Overview

Proxy LiDAR Sensor Fusion J
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Stereo

— Depth estimation as correspondence estimation and triangulation
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Stereo

— Depth estimation as correspondence estimation and triangulation

» Stereo rectified == Correspondence lies in horizontal scanline!
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Stereo

— Simplest matching uses photometric error between pixels

» Poor correspondences, since metric is not unique
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Stereo

— Simplest matching uses photometric error between pixels

» Poor correspondences, since metric is not unique 11(p) — I(p + h)|
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Stereo

— How to deal with this?

* Improve similarity metric == SSIM, descriptors...

* Add priors to cost volume == Smoothness, surface normals...

» Semi-Global Block Matching is commonly used to generate proxy depth
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Stereo

— Technically, we are predicting
pixel disparity

» Inverse parametrization of depth,

more stable

Focal Length Stereo Baseline
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Stereo

— DeepStereo: Learning to Predict New Views from the World’s Imagery
Flynn et al., CVPR16

— Pyramid Stereo Matching Network
Chang & Chen, CVPR18

— Revisiting Stereo Depth Estimation From a Sequence-to-Sequence Perspective With Transformers

Lietal., ICCV19

— Attention Concatenation Volume for Accurate and Efficient Stereo Matching
Xu et al.,, CVPR22
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Monocular

— Why monocular?

» Cheap & flexible

* Real-world deployment

Tesla

Pokemon GO (Niantic)

l'> Turn right

onW éth St

X 8 min 4
0.4 mi - 8:08 AM

Google AR Maps
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Monocular

— Monocular depth estimation is an ill-posed problem
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Monocular

— Monocular depth estimation is an ill-posed problem
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Monocular

— Monocular depth estimation is an ill-posed problem

Skrekkogle

Centre for Vision, UNIVERSITY OF
CVSSP [z SURREY



Monocular

— Humans can take advantage of priors E’l’lll-l-lC

» Absolute/relative object size
« Elevation

* Perspective and horizon

« Stereo/motion parallax

« Texture gradient

MASTER OF RURPETS

— Network must learn these geometric priors!
Not just rely on correspondences
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Monocular
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Monocular

— Humans can take advantage of priors

» Absolute/relative object size
« Elevation

* Perspective and horizon

« Stereo/motion parallax

« Texture gradient

— Network must learn these geometric priors!
Not just rely on correspondences
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Monocular

— Supervised learning with LIDAR, SfM, SLAM...

» Collecting this data is challenging and expensive

Kitti
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Monocular

— Supervised learning with LIDAR, SfM, SLAM...

» Collecting this data is challenging and expensive
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Monocular

— Supervised learning with LIDAR, SfM, SLAM...

» Collecting this data is challenging and expensive

SYNS-Patches
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Monocular

— Supervised learning with LIDAR, SfM, SLAM...

» Collecting this data is challenging and expensive

— Let’s go self-supervised!

» In both cases we predict sigmoid disparity, applying arbitrary scale
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Monocular

— How to train self-supervised then?

« Stereo/motion parallax
« Reconstruct target view + photometric error
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Monocular

— In stereo, correspondence must lie on horizontal scanline
— Disparity == Correspondence == Photometric relationship

() =1@+d)
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Monocular

— In stereo, correspondence must lie on horizontal scanline
— Disparity == Correspondence == Photometric relationship
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Monocular

— Garg et al. used this procedure to train first self-supervised CNN

» U-Net based on AlexNet, implemented in Caffe with custom layers

Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue, Garg et al, ECCV16
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Monocular

— Garg et al. used this procedure to train first self-supervised CNN

» U-Net based on AlexNet, implemented in Caffe with custom layers
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Monocular

— Monodepth modernized Garg + other contributions

« Spatial Transformer Networks (STN)
 Structural similarity error (SSIM)

Unsupervised Monocular Depth Estimation with Left-Right Consistency, Godard et al, CVPR17
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Monocular

— How to generalize to monocular video streams?

» Replace known stereo baseline with pose prediction network!

— Correspondences & view synthesis now depend on...

projective geometry LKE A LOT OF YOU, T

HAVE A REAL PROBLEM
WITH PROJECTION.

P9
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Monocular

— Requires knowledge of camera intrinsics
— Plus network to predict relative motion between frames (VO)

» Sensitive to dynamic objects!
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Monocular

— Requires knowledge of camera intrinsics
— Plus network to predict relative motion between frames (VO)

» Sensitive to dynamic objects!
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Monocular

— SfM-Learner was the first to apply these concepts

» Added explainability mask to account for dynamic objects

Unsupervised Learning of Depth and Ego-Motion from Video, Zhou et al, CVPR17
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SOTA Review

Base
+ Garg
* Monodepth
o SfM-Learner
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Improved Photometric
* Monodepth2

- D3VO

* Depth-VO-Feat

* DeFeat-Net

* Feat-Depth

J
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Proxy Supervision
Kuznietsov

« DVSO

 MonoResMatch

* DepthHints
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Architecture
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Monocular

— Garg: Stereo view synthesis (S) + Smoothness prior

— U-Net based on AlexNet, implemented in Caffe with custom layers

Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue, Garg et al, ECCV16
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Monocular

— Monodepth: S + Edge-aware smoothness + Virtual stereo

» Spatial Transformers + SSIM play large role in improvements

Target Ir r r||r
Output | J© I s
Sampler % @ ﬁ‘ ,j{'
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Unsupervised Monocular Depth Estimation with Left-Right Consistency, Godard et al, CVPR17
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Monocular

— SfM-Learner: Mono (M) + PoseNet + Explainability mask

» Pose representation as Euler & “bug” in smoothness prior

Unsupervised Learning of Depth and Ego-Motion from Video, Zhou et al, CVPR17
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SOTA Review

— DVSO: S + Refinement + Virtual Stereo + Proxy regression
(SLAM) + Occlusion regularization

— MonoResMatch : S + Refinement + Virtual Stereo + Proxy
regression (SGBM)
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Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry, Yang et al, ECCV18
Learning monocular depth estimation infusing traditional stereo knowledge, Tosi et al, CVPR19
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SOTA Review

— Monodepth2: MS + Min reconstruction loss + Automasking

» Upsampled multi-scale losses

Occluded pixel L | Good match
Ji /i

t-1 t t+1

Digging into Self-Supervised Monocular Depth Estimation, Godard et al, ICCV19
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SOTA Review

— Depth-VO-Feat: MS + Feature synthesis (pretrained)
— DeFeat-Net: MS + Feature synthesis (co-trained)

— FeatDepth: MS + Feature synthesis (autoencoder) + Feature
smoothness

Monodepth2 DeFeat-Net

Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction, Zhan et al, CVPR18
DefFeat-Net: General Monocular Depth via Simultaneous Unsupervised Representation Learning, Spencer et al, CVPR20
Feature-metric Loss for Self-supervised Learning of Depth and Egomotion, Shu et al, ECCV20
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SOTA Review

— DepthHints: MS + Proxy regression (fused SGBM) + Automasking

» Incorporate min reconstruction into proxy ground-truth generation

DSSIM+L1 cost
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Self-Supervised Monocular Depth Hints, Watson et al, ICCV19
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SOTA Review

— Johnson: M + Discrete disparity volume + Self-attention
» Final disparity given by Expected value (weighted sum)
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Self-supervised Monocular Trained Depth Estimation using Self-attention and Discrete Disparity Volume, Johnston & Carneiro, CVPR20
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SOTA Review

— PackNet: M + Speed loss + 3D (un)packing architecture

» Speed loss as a cheap way of constraining metric scale!

BxCixHxW

Sy
X
Q
X
T
X
S

i

Space2Depth

H W

B x4C; x — x — Bx4g”x11><ll’

V]

EM

’IXI)X‘(',XE)(?

Resh Reshape

T

B x4DC; x = x —

W
vacoxgx_ v B xC,x2H x 2W

(a) Packing (b) Unpacking J

oy} &
X
X ~
i o
q X
X o|&
m X
=
X X
= s
S| 3

EN
o =
<

V)

PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation, Guizilini et al, CVPR20
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SOTA Review

— HR-Depth: MS + Progressive skip connection + SqueezeExcite

» 10x parameter reduction w.r.t. PackNet + better performance!
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HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation, Lyu et al, CAI21
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