

Introduction to Birds-Eye-View Mapping

Avi Saha Jaime Spencer Chris Russell Simon Hadfield Richard Bowden

OVERVIEW

BEV Mapping

- 1. **Goal:** learn a model that takes a monocular input **image** and generates a semantically segmented **BEV** of the scene.
- 2. **Relevance:** autonomous navigation and planning on the fly.

Related Work

BEV Object Detection

Related work

Task: given image, predict BEV bounding box in camera coordinates. 1.

INPUT

BEV Object Detection

Related work

- 1. **Approach 1**: detect in image, then regress 3D pose, e.g. Mousavian et al. (2017)
 - **Limitations**: no global scene reasoning in 3D as each 3D object proposal is generated independently.

 STAGE 1: object detection
 STAGE 2: pose regression

Mousavian, A., Anguelov, D., Flynn, J. and Kosecka, J., 2017. 3d bounding box estimation using deep learning and geometry.

BEV Object Detection

Related work

- 1. **Approach 2**: project 3D grid to image, reason across all scene objects in BEV, Roddick et al. (2019)
 - **Limitations**: image context available to each BEV voxel is dependent upon distance from camera.

Roddick, T., Kendall, A. and Cipolla, R., 2018. Orthographic feature transform for monocular 3d object detection.

BEV Mapping

Related work

1. **Task:** given image, generate semantic BEV map.

BEV Mapping

Related work

- 1. Approach 1: explicit depth reasoning, Liu et al. (2020)
 - Limitations: requires depth and segmentation maps as additional input

Liu, B., Zhuang, B., Schulter, S., Ji, P. and Chandraker, M., 2020. Understanding road layout from videos as a whole.

BEV Mapping

Related work

- 1. Approach 2: implicit depth reasoning, Roddick and Cipolla (2020)
 - Limitations: bottleneck tends to ignore small objects

Roddick, T. and Cipolla, R., 2020. Predicting semantic map representations from images using pyramid occupancy networks.

Methodology

Saha, A., Mendez, O., Russell, C. and Bowden, R., 2022, May. Translating images into maps.

OVERVIEW

Approach

Our end-to-end approach

- a. Construct spatial representations in the image-plane
- b. Transform image-plane representations to BEV
- c. Construct spatiotemporal representation in BEV-plane (optional)
- d. Semantically segment BEV representation

OVERVIEW

Approach

Our end-to-end approach

- a. Construct spatial representations in the image-plane
- b. Transform image-plane representations to BEV
- c. Construct spatiotemporal representation in BEV-plane (optional)
- d. Semantically segment BEV representation

MOTIVATION

Image-to-BEV Translation

- 1. Image-to-BEV mapping requires image-pixel correspondence in BEV.
- 2. Horizontal component that each element maps to is fixed.
- 3. 1-1 correspondence between vertical scan line and the associated polar ray
- 4. We treat the mapping process as a set of sequence-to-sequence translations between scanlines in the image and rays in BEV

Image-to-BEV w. Transformers

1. Transformer Encoder:

- a. Encode vertical dependencies in image-column.
- b. Maintain spatial structure of encoded image-column in "memory".

2. Transformer Decoder:

- a. Learn alignment between memory and positional BEV polar ray queries.
- b. Use alignment to distribute features in memory across polar ray.

Exploiting regularities in data

- 1. Transformers known to overfit therefore limit where model looks
- 2. In urban environments, **depth monotonically increases with height**.
- 3. Enforce monotonic relationship on attention between encoder-decoder.

Exploiting regularities in data

1. Transformer should be **data efficient** + capture regularities in data.

Exploiting regularities in data

1. **Object distribution** varies across angular domain —> use polar positional information

Convolutional

BASE + A = Polar Agnostic

BASE + A + B = Polar Adaptive

Overview

2. Our end-to-end approach

- a. Construct spatial representations in the image-plane
- b. Transform image-plane representations to BEV
- c. Construct spatiotemporal representation in BEV-plane (optional)
- d. Semantically segment BEV representation

Learning grid-aligned motion

1. Principal patterns of motion:

- a. Parallel to ego-vehicle
- b. Perpendicular to ego-vehicle
- 2. Grid like motion can be learnt with **factorised 3D convolutions**.

PATTERNS OF MOTION

Constructing spatiotemporal representations

1. Generate BEV features for multiple timesteps

Constructing spatiotemporal representations

- 1. Generate BEV features for multiple timesteps
- 2. Learn dynamics using factorised 3D convolutions aligned to grid-like motion

Constructing spatiotemporal representations

- 1. Generate BEV features for multiple timesteps
- 2. Learn dynamics using factorised 3D convolutions aligned to grid-like motion
- 3. Aggregate into spatiotemporal representation for single timestep

END-TO-END FORMULATION

Model architecture

- 1. Frontend extracts spatial features at multiple scales.
- 2. **Transformers** translate each scale of features to polar spatial representations at different depth ranges.
- 3. **Resampling** operation converts polar spatial features to rectilinear coordinate frame.
- 4. **3D Convolutions** learn dynamics to build a spatiotemporal BEV representation
- 5. **BEV Segmentation** network decodes BEV features into semantic occupancy grids.
- 6. **Dice Loss** applied to semantic maps at multiple scales.

EXPERIMENTS

Qualitative results

Roddick, T. and Cipolla, R., 2020. PON: Predicting semantic map representations from images using pyramid occupancy networks.

1. Multi-scale supervision: increases IoU by emulating an Earth Mover's Distance.

1. Where to look? looking downwards better than looking up, but looking in both directions is best.

IoU = 22.1%

IoU = 24.7%

1. **Polar-agnostic vs. Polar-adaptive Translations:** polar-positional information increases object discriminativeness in the image-plane.

1. Learning dynamics in BEV vs. image-plane: motion-specific kernels are better suited to the grid-like motion seen in BEV.

IoU = 18.3%

Attention vs Compression

COMPRESSION

- Compresses image-features into a bottleneck using a fully-connected layer.
- 2. Expands bottleneck along polar axis using another fully-connected layer.

Roddick, T. and Cipolla, R., 2020. Predicting semantic map representations from images using pyramid occupancy networks.

29

Attention vs Compression

at different depths 40m **GROUND TRUTH** 20m COMPRESSION 10m 40m ATTENTION 20m 10m

ENCODER-DECODER ATTENTION

Overcoming tendency to ignore small objects in image

EXPERIMENTS

Comparison to SOTA

GROUND TRUTH

MODEL OUTPUT

Method	Drivable	Ped. Cross	Walkway	Carpark	Bus	Bicycle	Car	Motorcycle	Trailer	Truck	Pedestrian	Traf. Cone	Barrier	Mean		
PON [39]	60.4	28.0	31.0	18.4	20.8	9.4	24.7	7.0	16.6	16.3	8.2	5.7	8.1	19.6		
VED [26]	54.7	12.0	20.7	13.5	0.0	0.0	8.8	0.0	7.4	0.2	0.0	0	4.0	9.3		
VPN [34]	58.0	27.3	29.4	12.3	20.0	4.4	25.5	5.6	16.6	17.3	7.1	4.6	10.8	18.4		
Our Spatial (polar-agnostic)	70.7	33.9	30.9	30.7	30.6	15.0	35.9	7.9	15.1	21.6	7.7	6.9	14.6	24.7		
Our Spatial (polar-adaptive)	71.7	34.5	32.7	31.3	33.5	16.0	36.2	6.8	14.4	26.5	8.1	6.7	15.9	25.7		
Our Spatiotemp. (polar-agnostic)	72.6	34.1	34.2	31.5	30.9	14.7	38.1	7.4	13.5	23.1	8.3	7.0	14.2	25.4		

Thanks for watching! Questions?