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OVERVIEW
BEV Mapping

1. Goal: learn a model that takes a monocular input image and generates a semantically 
segmented BEV of the scene.

2. Relevance: autonomous navigation and planning on the fly.

INPUT

OUTPUT
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Related Work
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BEV Object Detection
Related work

1. Task: given image, predict BEV bounding box in camera coordinates.

INPUT

OUTPUT
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BEV Object Detection
Related work

1. Approach 1: detect in image, then regress 3D pose, e.g. Mousavian et al. (2017)

○ Limitations: no global scene reasoning in 3D as each 3D object proposal is generated 
independently.

STAGE 1: object detection STAGE 2: pose regression

Mousavian, A., Anguelov, D., Flynn, J. and Kosecka, J., 2017. 3d bounding box estimation using deep learning 
and geometry.
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BEV Object Detection
Related work

1. Approach 2: project 3D grid to image, reason across all scene objects in BEV, Roddick et al. (2019)

○ Limitations: image context available to each BEV voxel is dependent upon distance from 
camera.

Roddick, T., Kendall, A. and Cipolla, R., 2018. Orthographic feature transform for monocular 3d object detection. 6



BEV Mapping
Related work

1. Task: given image, generate semantic BEV map.

INPUT

OUTPUT
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BEV Mapping
Related work

1. Approach 1: explicit depth reasoning, Liu et al. (2020)

○ Limitations: requires depth and segmentation maps as additional input

Liu, B., Zhuang, B., Schulter, S., Ji, P. and Chandraker, M., 2020. Understanding road layout from videos as a 
whole.

8



BEV Mapping
Related work

1. Approach 2: implicit depth reasoning, Roddick and Cipolla (2020)

○ Limitations: bottleneck tends to ignore small objects

Roddick, T. and Cipolla, R., 2020. Predicting semantic map representations from images using pyramid 
occupancy networks.
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Methodology

Saha, A., Mendez, O., Russell, C. and Bowden, R., 2022, May. 
Translating images into maps.
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OVERVIEW
Approach

Our end-to-end approach

a. Construct spatial representations in the image-plane

b. Transform image-plane representations to BEV

c. Construct spatiotemporal representation in BEV-plane (optional)

d. Semantically segment BEV representation

a b c d

MODEL ARCHITECTURE
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MOTIVATION
Image-to-BEV Translation

1. Image-to-BEV mapping requires image-pixel 
correspondence in BEV.

2. Horizontal component that each element 
maps to is fixed.

3. 1-1 correspondence between vertical scan 
line and the associated polar ray

4. We treat the mapping process as a set of 
sequence-to-sequence translations between 
scanlines in the image and rays in BEV
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METHOD
Image-to-BEV w. Transformers

1. Transformer Encoder:

a. Encode vertical dependencies in 
image-column.

b. Maintain spatial structure of encoded 
image-column in “memory”.

2. Transformer Decoder:

a. Learn alignment between memory and 
positional BEV polar ray queries.

b. Use alignment to distribute features in 
memory across polar ray.
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METHOD
Exploiting regularities in data

encoder

interplane attention

1. Transformers known to overfit - therefore limit 
where model looks

2. In urban environments, depth monotonically 
increases with height.

3. Enforce monotonic relationship on attention 
between encoder-decoder.
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METHOD
Exploiting regularities in data

BASE + A = Polar AgnosticConvolutional

1. Transformer should be data efficient + capture regularities in data.
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METHOD
Exploiting regularities in data

BASE + A = Polar AgnosticConvolutional BASE + A + B = Polar Adaptive

1. Object distribution varies across angular domain —> use polar positional information
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   2.     Our end-to-end approach

a. Construct spatial representations in the image-plane

b. Transform image-plane representations to BEV

c. Construct spatiotemporal representation in BEV-plane (optional)

d. Semantically segment BEV representation

a b c d

MODEL ARCHITECTURE

METHOD
Overview
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PATTERNS OF MOTION1. Principal patterns of motion:

a. Parallel to ego-vehicle

b. Perpendicular to ego-vehicle

2. Grid like motion can be learnt with factorised 
3D convolutions.

METHOD
Learning grid-aligned motion
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tim
e

1. Generate BEV features for multiple timesteps

METHOD
Constructing spatiotemporal representations
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FA
CTORIS

ED 3D 

CONVOLU
TIO

NS

1. Generate BEV features for multiple timesteps
2. Learn dynamics using factorised 3D convolutions aligned to grid-like motion 

FACTORISED 3D 
CONVOLUTIONS

METHOD
Constructing spatiotemporal representations
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FACTORISED 3D 
CONVOLUTIONS

FA
CTORIS

ED 3D 

CONVOLU
TIO

NS

1. Generate BEV features for multiple timesteps
2. Learn dynamics using factorised 3D convolutions aligned to grid-like motion
3. Aggregate into spatiotemporal representation for single timestep

METHOD
Constructing spatiotemporal representations
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1. Frontend extracts spatial features at multiple scales.

2. Transformers translate each scale of features to polar spatial representations at different depth ranges.

3. Resampling operation converts polar spatial features to rectilinear coordinate frame.

4. 3D Convolutions learn dynamics to build a spatiotemporal BEV representation

5. BEV Segmentation network decodes BEV features into semantic occupancy grids.

6. Dice Loss applied to semantic maps at multiple scales.

END-TO-END FORMULATION
Model architecture
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Image Ground truth Our spatial 
model

Our 
spatiotemporal

PON

EXPERIMENTS
Qualitative results
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Roddick, T. and Cipolla, R., 2020. PON: Predicting semantic map representations from images using pyramid occupancy networks.



1. Multi-scale supervision: increases IoU by emulating an Earth Mover’s Distance.

supervision scales: 1 supervision scales: 1, 1/2 supervision scales: 1, ½, ¼ 

IoU = 21.6%IoU = 17.3% IoU = 24.7%

ABLATIONS
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1. Where to look? looking downwards better than looking up, but looking in both directions is 
best. 

Looking DownLooking Up Looking Both Ways

IoU = 23.0%IoU = 22.1% IoU = 24.7%

ABLATIONS
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1. Polar-agnostic vs. Polar-adaptive Translations: polar-positional information increases 
object discriminativeness in the image-plane.

Polar-Agnostic Polar-Adaptive

IoU = 24.7% IoU = 25.7%

ABLATIONS
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1. Learning dynamics in BEV vs. image-plane: motion-specific kernels are better suited to the 
grid-like motion seen in BEV.

Dynamics in image Dynamics in BEV

IoU = 18.3% IoU = 25.4%

ABLATIONS
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COMPRESSION ATTENTION

ABLATIONS
Attention vs Compression

1. Compresses image-features into a 
bottleneck using a fully-connected layer.

2. Expands bottleneck along polar axis using 
another fully-connected layer.

Roddick, T. and Cipolla, R., 2020. Predicting 
semantic map representations from images 
using pyramid occupancy networks. 29



ABLATIONS
Attention vs Compression
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ENCODER-DECODER ATTENTION 
at different depths



ABLATIONS
Overcoming tendency to ignore small objects in image
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EXPERIMENTS
Comparison to SOTA
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Thanks for watching!
Questions?
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