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– Recent efforts in benchmarking monocular depth estimation 

– Failure points
• Incorrect ground-truth
• Uninformative metrics
• Ablating/hyperparam tuning on test set
• Non-comparable methodologies

Overview
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Deconstructing Monocular Depth Reconstruction: The Design Decisions that Matter, Spencer et al, arXiv22
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– Benchmarking is a core component of every research field

Overview
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IS
• Proxy for real-world performance

• Introspective

• Comparison between methods

ISN’T
• Real-world performance

• Every metric ever invented

• Holy grail for accepting papers



Ground-truth



– Depth estimation on Kitti uses vehicle LiDAR
• Viewpoints not perfectly aligned           Different occlusions
• Combined with LiDAR sparsity             Inaccurate at boundaries

Ground-truth
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– Does it mean this benchmark was useless? No!
– As research progresses, the detail required changes

Ground-truth
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Garg et al, 2016Eigen & Fergus, 2014



– Accumulate LiDAR over multiple frames + consistency checks
Ø Removes points close to object boundaries

Ground-truth
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Sparsity Invariant CNNs, Uhrig et al, 3DV17



– Accumulate LiDAR over multiple frames + consistency checks
Ø Removes points close to object boundaries
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Sparsity Invariant CNNs, Uhrig et al, 3DV17



– SYNS consists of aligned image/LiDAR panoramas
Ø Outdoor & dense! But highly sensitive to dynamic objects

Ground-truth
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The Southampton-York Natural Scenes (SYNS) dataset: Statistics of surface attitude, Adams et al, Scientific Reports 16



– Generate SYNS-Patches by sampling every 20° at eye level
Ø Manual filtering of dynamic objects and inconsistencies

Ground-truth
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– Generate SYNS-Patches by sampling every 20° at eye level
Ø Manual filtering of dynamic objects and inconsistencies
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– Generate SYNS-Patches by sampling every 20° at eye level
Ø Dense ground-truth allows for accurate depth boundaries

Ground-truth
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Metrics



– A few Kitti Eigen metrics are saturated, incorrect or not informative

Metrics
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– We incorporate metrics from Kitti Benchmark
– Favour those that are more interpretable: MAE, RMSE, AbsRel…
Ø Forgotten Scale Invariant Log

Metrics
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Directional Term!



– Metrics so far focus on depth accuracy along each ray
Ø Recall: Objective is to recover 3D structure of the scene! 

Metrics
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– Örnek et al. propose to instead use pointcloud-based
reconstruction metrics

Ø F-Score & IoU based on Precision and Recall at 10cm accuracy

Metrics
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From 2D to 3D: Re-thinking Benchmarking of Monocular Depth Prediction, Örnek et al, arXiv22



– SYNS-Patches depth boundary metrics based on IBims-1 
Ø Chamfer distance between predicted/ground-truth boundaries

Metrics
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Evaluation of CNN-based Single-Image Depth Estimation Methods, Koch et al, ECCV-W18

Edge Accuracy Edge Completeness



Design Decisions



– Common discrepancies in training procedure
• Input image size
• Pretraining
• Hyperparams
• Architecture
• Cherry picking

– We aim to minimize changes between approaches

Design Decisions
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– Another common source of error is hyperparam tuning on test set
Ø Can lead to overfitting over the course of optimization cycles

Design Decisions
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– We hope to mitigate these inconsistencies by standardizing 
benchmarking procedure

– Each model is trained with three different random seeds
Ø Report mean performance across seeds

Design Decisions
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– First ablation based on changing backbone
Ø Simple* engineering changes vs. complex contributions

Design Decisions
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*Made simple by wonderful timm library!



– Next ablation based on regularization techniques
Ø Edge-aware smoothness, second-order & occlusion

Design Decisions
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Kitti Eigen Test Split



– Next ablation based on regularization techniques
Ø Edge-aware smoothness, second-order & occlusion

Design Decisions
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Kitti Eigen-Zhou Val Split



Results



Results
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MONO (M)
• SfM-Learner
• Klodt
• Johnston

STEREO (S)
• Garg
• Monodepth
• SuperDepth

MS
• Depth-VO-Feat
• Monodepth2
• FeatDepth
• CADepth
• DiffNet
• HR-Depth

PROXY (D*)
• Kuznietsov
• DVSO
• MonoResMatch
• DepthHints



Results
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– Evaluation on Kitti Eigen
Ø Performance vs. original is better, but relative w.r.t. Garg is much lower

Absolute – Lower is Better Relative – Higher is Better



Results
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Kitti Eigen-Benchmark Test Split



Results
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Results
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SYNS-Patches Test Split



Results

36



Conclusions



– Classical methods are still highly competitive
Ø Be wary of taking benchmarking rankings as absolute

– Monocular supervision still sensitive to dynamic objects
Ø Monodepth2 contributions are great for mitigating this!

– Check out our workshop/challenge at WACV23!
Ø Submissions will likely close early November

Conclusions
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Questions?
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