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Overview

— Recent efforts in benchmarking monocular depth estimation

— Failure points

* Incorrect ground-truth

* Uninformative metrics
 Ablating/hyperparam tuning on test set
« Non-comparable methodologies

Deconstructing Monocular Depth Reconstruction: The Design Decisions that Matter, Spencer et al, arXiv22
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Overview

— Benchmarking is a core component of every research field

IS ISN'T
* Proxy for real-world performance » Real-world performance
* Introspective « Every metric ever invented
« Comparison between methods / * Holy grail for accepting papers /
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Ground-truth

— Depth estimation on Kitti uses vehicle LiDAR

* Viewpoints not perfectly aligned === Different occlusions
 Combined with LIDAR sparsity === Inaccurate at boundaries
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Ground-truth

— Depth estimation on Kitti uses vehicle LiDAR
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Ground-truth

— Does it mean this benchmark was useless? No!

— As research progresses, the detail required changes

Eigen & Fergus, 2014 Garg et al, 2016
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Ground-truth

— Accumulate LIDAR over multiple frames + consistency checks

» Removes points close to object boundaries

Sparsity Invariant CNNs, Uhrig et al, 3DV 17
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Ground-truth

Accumulate LiDAR over multiple frames + consistency checks

» Removes points close to object boundaries
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Sparsity Invariant CNNs, Uhrig et al, 3DV 17
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Ground-truth

— SYNS consists of aligned image/LIiDAR panoramas

» Outdoor & dense! But highly sensitive to dynamic objects

The Southampton-York Natural Scenes (SYNS) dataset: Statistics of surface attitude, Adams et al, Scientific Reports 16
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Ground-truth

— Generate SYNS-Patches by sampling every 20° at eye level

» Manual filtering of dynamic objects and inconsistencies
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Ground-truth
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Ground-truth

— Generate SYNS-Patches by sampling every 20° at eye level

» Dense ground-truth allows for accurate depth boundaries
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Metrics

— Afew Kitti Eigen metrics are saturated, incorrect or not informative

higher is better

01 0o O3
0.879 0.961 0.982
0.887 0.964 0.983
0.884 0.965 0.984
0.892 0.966 0.984
0.893 0.965 0.984
0.888 0.965 0.984
0.898 0.966 0.984
0.907 0.967 0.984
0.908 0.968 0.984
0.895 0.964 0.982
0.891 0.963 0.982
0.894 0.966 0.984
0.900 0.968 0.984
0.912 0.969 0.984

Squared Relative difference: ﬁ S er lly — v 112 /y"
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Metrics

— We incorporate metrics from Kitti Benchmark
— Favour those that are more interpretable: MAE, RMSE, AbsRel...

» Forgotten Scale Invariant Log

e = \/ I log () — log (y (El: log (§) — log (y))2

Directional Term!
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Metrics

— Metrics so far focus on depth accuracy along each ray

» Recall: Objective is to recover 3D structure of the scene!

Centre for Vision, UNIVERSITY OF
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Metrics

— Ornek et al. propose to instead use pointcloud-based
reconstruction metrics

» F-Score & loU based on Precision and Recall at 10cm accuracy

Method 2D Metrics 3D Metrics
absrell mmsel &7 | CDl EMD| Comp.] IoUf F-scoret

Oracle NN 0.097 0.225 0.891 | 0.257 0.130 0.128 0.328 0:335
Median Plane 0.211 0.577 0.668 | 0.677 0.636 0.042 0.347 0.369
Eigen [3] 0.217 0.712 0.637 | 0.584  0.529 0.055 0.254 0.405
FCRN [4] 0.217 0.703  0.647 | 0.491 0.430 0.061 0.273 0.428
BTS [6] 0.190 0.657 0.694 | 0454  0.400 0.055 0.336 0.500
VNL [36] 0.258 0.638 0.534 | 0.764 0.686 0.078 0.219 0.313

From 2D to 3D: Re-thinking Benchmarking of Monocular Depth Prediction, Ornek et al, arXiv22
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Metrics

— SYNS-Patches depth boundary metrics based on IBims-1

» Chamfer distance between predicted/ground-truth boundaries
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Edge Accuracy Edge Completeness

Evaluation of CNN-based Single-Image Depth Estimation Methods, Koch et al, ECCV-W18
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Design Decisions

— Common discrepancies in training procedure

* Input image size
* Pretraining

« Hyperparams
 Architecture

» Cherry picking

— We aim to minimize changes between approaches

Centre for Vision, UNIVERSITY OF
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Design Decisions

— Another common source of error is hyperparam tuning on test set

» Can lead to overfitting over the course of optimization cycles

Test Time Refinement Model

One advantage of having a single-frame depth estimator is
its wide applicability. However, this comes at a cost when
running continuous depth estimation on image sequences as
consecutive predictions are often misaligned or discontinu-
ous. These are caused by two major issues 1) scaling incon-
sistencies between neighboring frames, since both our and
related models have no sense of global scale, and 2) low
temporal consistency of depth predictions. In this work we
contend that fixing the model weights during inference is
not required or needed and being able to adapt the model
in an online fashion is advantageous, especially for practical
autonomous systems. More specifically, we propose to keep
the model training while performing inference, addressing
these concerns by effectively performing online optimiza-
tion. In doing that, we also show that even with very lim-
ited temporal resolution (i.e., three-frame sequences), we
can significantly increase the quality of depth predictions
both qualitatively and quantitatively. Having this low tempo-
ral resolution allows our method to still run on-line in real-
time, with a typically negligible delay of a single frame. The
online refinement is run for N steps (N = 20 for all exper-
iments) which are effectively fine-tuning the model on-the-
fly; N determines a good compromise between exploiting
the online tuning sufficiently and preventing over-training
which can cause artifacts. The online refinement approach
can be seamlessly applied to any model including the moj-

tion model described above.
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Design Decisions

— We hope to mitigate these inconsistencies by standardizing
benchmarking procedure

— Each model is trained with three different random seeds

» Report mean performance across seeds
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Design Decisions

First ablation based on changing backbone

*Made simple by wonderful timm library!

» Simple” engineering changes vs. complex contributions
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Design Decisions

— Next ablation based on regularization techniques

» Edge-aware smoothness, second-order & occlusion

KE (test) # AbsRell SqRell RMSE] LogRMSEl § < 1.25" § < 1.25%¢4 8'< 1.25°%
No Regularization 2  0.1002 0.7580  4.5833 0.1905 0.8865 0.9589 0.9798
First-order 1 0.0993 0.7386 4.5274 0.1873 0.8870 0.9608 0.9810
Fist-order Blur 7 0.1013 0.7600  4.5431 0.1886 0.8849 0.9603 0.9807
Second-order 4  0.1004 0.7567  4.5260  0.1877 0.8871 0.9609 0.9808
Second-order Blur 3 0.1003 0.7661  4.5512 0.1881 0.8867 0.9607 0.9806
Occlusion (BG) 6  0.1004 0.7573  4.5454 0.1872 0.8850 0.9607 0.9811
Occlusion (FG) 5  0.1004 0.7623  4.5326 0.1872 0.8870 0.9611 0.9810

Kitti Eigen Test Split

Centre for Vision, UNIVERSITY OF
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Design Decisions

— Next ablation based on regularization techniques

» Edge-aware smoothness, second-order & occlusion

Image-based Pointcloud-based
KEZ (val) # MAE|l RMSE] AbsRel]l LogSI} # Chamfer] F-Scoret IoU4
No Regularization 1 1.63 3.68 7.86 11.35 1 0.66 50.25 34.68
First-order 3 1.65 3.64 8.12 11.32 () 0.67 49.30 33.90
Fist-order Blur 5 1.65 3.66 8.19 11.36 4 0.67 49.39 33.96
Second-order 2 1.64 3.64 8.10 11.25 5 0.67 49.32 33.93
Second-order Blur 4 1.65 3.66 8.14 11.27 2 0.67 49.46 34.05
Occlusion (BG) 7 1.66 3.65 8.27 11.38 7 0.68 48.86 33.52
Occlusion (FG) 6 1.65 3.65 8.19 11.23 3 0.67 49.40 34.02

Kitti Eigen-Zhou Val Split
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Results

MONO (M) STEREO (S)
o SfM-Learner . Garg
* Klodt « Monodepth
 Johnston y . SuperDepth B
MS ;RQXY (D*)
« Depth-VO-Feat DiJ/ZSn(IDGtSOV
* Monodepth2
- FeatDepth * MonoResMatch
« CADepth * DepthHints )
« DiffNet

* HR-Depth /
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Results

— Evaluation on Kitti Eigen

» Performance vs. original is better, but relative w.r.t. Garg is much lower
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Results

Image-based Pointcloud-based

Kitti Eigen-Benchmark (test)  Train MAE] RMSE|l AbsRell LogSI] Chamfer] F-Scoret IoUt

SfM-Learner M 1.98 4.57 10.69 15.80 0.73 44.77 30.03
Klodt M 1.96 4.54 10.49 15.86 0.72 45.26 30.40
Monodepth2 M 1.84 4.11 8.82 13.10 0.71 46.64 31.62
Johnston M 1.80 4.04 8.65 12.75 0.69 47.35 32.10
HR-Depth M 1.83 3.99 8.85 12.89 0.71 45.72 30.78
Garg S 1.60 3.75 7.65 11.39 0.60 53.28 37.33
Monodepth S 1.76 3.99 8.65 13.08 0.67 49.80 34.09
SuperDepth S 1.64 3.77 7.81 11.63 0.63 52.30 36.40
Depth-VO-Feat MS 1.63 3.72 7.70 11.64 0.62 52.01 36.15
Monodepth2 MS 1.61 3.62 7.90 10.99 0.64 50.50 34.98
FeatDepth MS 1.60 3.60 7.80 11.01 0.65 49.99 34.51
CADepth MS 1.63 3.60 8.09 10.84 0.66 49.32 34.06
DiffNet MS 1.62 3.63 7.97 10.93 0.65 49.63 34.23
HR-Depth MS 1.58 3.56 7.70 10.68 0.62 51.49 35.93
Kuznietsov SD* 1.82 3.98 9.32 11.80 0.71 45.80 30.63
DVSO SD* 1.71 3.89 8.38 11.38 0.68 48.50 32.97
MonoResMatch SD* 1.65 3.79 7.90 11.74 0.66 50.70 34.92
DepthHints MSD*  1.63 3.62 8.10 10.94 0.66 49.30 33.80

Kitti Eigen-Benchmark Test Split
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Results
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Results

Image-based Pointcloud-based Edge-based

SYNS-Patches Train MAE|l RMSE| LogSI] AbsRel]l Chamfer] F-Scoret IoU%t Accl{ Compl  F-Scoret

SfM-Learner M 5.43 9.25 36.91 31.58 2.66 11.79 6.43 3.46  36.12 8.47
Klodt M 5.40 9.20 36.40 31.20 2.57 12.00 6.57 3.44  35.22 8.48
Monodepth2 M 5.33 9.02 35.62 30.05 2.78 12.08 6.62 3.30  37.01 8.46
Johnston M 5.26 8.95 34.90 29.53 2.59 13.37 7.40 3.07  30.03 9.16
HR-Depth M 5.24 8.92 35.28 29.72 2.74 12.16 6.66 3.23  42.82 8.60
Garg S 5.29 9.20 35.81 30.73 2.41 13.48 7.45 3.37  26.79 9.53
Monodepth S 5.36 9.14 36.50 31.32 2.92 12.04 6.62 3.62  68.31 8.43
SuperDepth S 5.26 9.08 35.82 30.83 2.72 12.87 7.10 3.40  40.40 9.01
Depth-VO-Feat ~ MS 5.30 9.17 35.95 30.83 2.52 12.43 6.82 3.50  38.49 8.77
Monodepth2 MS 5.18 8.91 35.05 29.04 2.63 13.18 7.27 3.38  32.69 8.95
FeatDepth MS 5.16 8.80 34.94 29.12 2.68 12.27 6.73 3.50  44.09 8.41
CADepth MS 5.22 8.97 34.99 29.80 2.45 12.83 7.06 3.42  35.89 8.70
DiffNet MS 5.16 8.91 34.66  28.80 2.55 13.16 7.26 3.45  39.46 8.81
HR-Depth MS 5.13 8.85 3479  28.94 2.43 13.79 7.65 3.25  28.33 9.21
Kuznietsov SD* 5.47 9.50 35.56 31.08 2.44 13.15 7.26 3.39 47.13 9.11
DVSO SD* 5.21 8.98 35.04 29.79 2.62 12.68 7.00 3.48  57.57 9.03
MonoResMatch  SD* 5.17 8.92 35.24 29.76 2.81 12.34 6.80 3.56  67.71 8.76
DepthHints MSD*  5.33 9.07 35.70 30.90 2.37 12.91 AT 324 26.21  9.01

SYNS-Patches Test Split
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Results
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Conclusions

— Classical methods are still highly competitive

» Be wary of taking benchmarking rankings as absolute

— Monocular supervision still sensitive to dynamic objects
» Monodepth2 contributions are great for mitigating this!

— Check out our workshop/challenge at WACV23!
» Submissions will likely close early November
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